An EKV-based high voltage MOSFET model with improved mobility and drift model

نویسندگان

  • Yogesh Singh Chauhan
  • Renaud Gillon
  • Benoit Bakeroot
  • Francois Krummenacher
  • Michel Declercq
  • Adrian Mihai Ionescu
  • Adrian M. Ionescu
  • Yusuf Leblebici
چکیده

An EKV-based high voltage MOSFET model is presented. The intrinsic channel model is derived based on the charge based EKVformalism. An improved mobility model is used for the modeling of the intrinsic channel to improve the DC characteristics. The model uses second order dependence on the gate bias and an extra parameter for the smoothening of the saturation voltage of the intrinsic drain. An improved drift model [Chauhan YS, Anghel C, Krummenacher F, Ionescu AM, Declercq M, Gillon R, et al. A highly scalable high voltage MOSFET model. In: IEEE European solid-state device research conference (ESSDERC), September 2006. p. 270–3; Chauhan YS, Anghel C, Krummenacher F, Maier C, Gillon R, Bakeroot B, et al. Scalable general high voltage MOSFET model including quasi-saturation and self-heating effect. Solid State Electron 2006;50(11–12):1801–13] is used for the modeling of the drift region, which gives smoother transition on output characteristics and also models well the quasi-saturation region of high voltage MOSFETs. First, the model is validated on the numerical device simulation of the VDMOS transistor and then, on the measured characteristics of the SOILDMOS transistor. The accuracy of the model is better than our previous model [Chauhan YS, Anghel C, Krummenacher F, Maier C, Gillon R, Bakeroot B, et al. Scalable general high voltage MOSFET model including quasi-saturation and self-heating effect. Solid State Electron 2006;50(11–12):1801–13] especially in the quasi-saturation region of output characteristics. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HiSIM-HV: A Scalable, Surface-Potential-Based Compact Model for High-Voltage MOSFETs

The main features of the industry standard compact model HiSIM-HV for high-voltage MOSFETs are described. The basis of HiSIM-HV is a consistent physically correct potential determination in the MOSFET core and the surrounding drift regions, providing the high-voltage capabilities. Consequently, HiSIM-HV can accurately calculate the physical potential distribution in the entire asymmetric LDMOS ...

متن کامل

Proposal of a physics-based compact model for nanoscale MOSFETs including the transition from drift-diffusion to ballistic transport

We present an analytical model for nanoscale MOSFETs capable to describe the transition from drift-diffusion to ballistic transport. We start from a closed-form model of ballistic Fully Depleted SOI (FDSOI) and Double Gate (DG) MOSFETs with non degenerate statistics, and, on the basis of the Büttiker interpretation of dissipative transport in terms of virtual voltage probes, we show that a long...

متن کامل

Inversion Charge Linearization in MOSFET Modeling and a Rigorous Derivation of the EKV Compact Model

In this paper, the implications of inversion charge linearization in compact MOS transistor modeling are discussed. The charge-sheet model provides the basic relation among inversion charge and applied potentials, via the implicit surface potential. A rigorous derivation of simpler relations among inversion charge and applied external potentials is provided, using the technique of inversion cha...

متن کامل

Scalable general high voltage MOSFET model including quasi-saturation and self-heating effects

In this work, we present for the first time, a highly scalable general high voltage MOSFET model, which can be used for any high voltage MOSFET with extended drift region. This model includes physical effects like the quasi-saturation, impact-ionization and self-heating, and a new general model for drift resistance. The model is validated on the measured characteristics of two widely used high ...

متن کامل

Characterization and modeling of 1200V – 100A N – channel 4H-SiC MOSFET

The static characteristics of CREE 1200V/100A 4H-SiC MOSFET have been fully characterized at temperatures ranging from 0°C to 150°C. The distinct characteristics of high power SiC MOSFET compared with the silicon counterparts are analyzed and explained. A novel physics-based analytical model for SiC MOSFET has been developed by using the MAST language and simulated with SABER software to expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007